Explaining statin inhibition effectiveness of HMG-CoA reductase by quantum biochemistry computations.
نویسندگان
چکیده
By taking advantage of the crystallographic data of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) complexed with statins, a quantum biochemistry study based on the density functional theory is performed to estimate the interaction energy for each statin when one considers binding pockets of different sizes. Assuming a correlation between statin potency and the strength of the total HMGR-statin binding energy, clinical data as well as IC(50) values of these cholesterol-lowering drugs are successfully explained only after stabilization of the calculated total binding energy for a larger size of the ligand-interacting HGMR region, one with a radius of at least 12.0 Å. Actually, the binding pocket radius suggested by classic works, which was based solely on the interpretation of crystallographic data of the HMGR-statin complex, is smaller than that necessary to achieve total binding energy convergence in our simulations. Atorvastatin and rosuvastatin are shown to be the most strongly bound HMGR inhibitors, while simvastatin and fluvastatin are the weakest ones. A binding site, interaction energy between residues and statin atoms, and residues domain (BIRD) panel is constructed, indicating clear quantum biochemistry-based routes for the development of new statin derivatives.
منابع مشابه
Liver biochemistry abnormalities in a quaternary care lipid clinic database.
BACKGROUND The metabolic syndrome and non-alcoholic fatty liver disease are increasing at alarming rates. AIMS To determine the effect of HMG-CoA reductase inhibitors (statins) on elevated liver enzymes in patients with hyperlipidemia. PATIENTS Patients with AST above 60 U/L prior to or during treatment with statin therapy at a quaternary care lipid clinic were reviewed. METHODS A retrosp...
متن کاملStructural mechanism for statin inhibition of HMG-CoA reductase.
HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR comple...
متن کاملThe effect of aerobic training and consumption of L-carnitine supplements on HMG-CoA reductase and LDL receptor in the liver of male wistar rats toxicated by boldenone
Introduction: The aim of this study was to investigate the effect of aerobic training and consumption of L-carnitine supplements on HMG-CoA reductase and low density lipoprotein receptor (LDL-R) in the liver of male Wistar rats toxicated by boldenone. Materials and methods: In this clinical study, 30 male Wistar rats aged 12 weeks (weight 195±7.94g) were randomly divided into five groups: cont...
متن کاملNovel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.
Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase ac...
متن کاملHMG CoA Reductase Inhibitors Inhibit HCV RNA Replication of HCV Genotype 1b but Not 2a
Replication of hepatitis C virus (HCV) is regulated by statin, one of 3-hydroxy-3-methylglutaryl CoA reducatase (HMG CoA reductase) inhibitors that block mevalonate pathway and cholesterol biosyntheis, which has been used usefully for health improvement and disease control in clinic. In order to know which statin can be used to inhibit HCV replication, we examined the effects of HCV genotype 1b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2012